Thermodynamics and kinetics

- Thermodynamic laws
- Half-cell reactions
- Kinetics
- Acid-Base
- Equilibrium calculations
- Speciation calculation from complexation constants
- Provide review of concepts for applications to radiochemistry

Thermodynamic terms

- Heat Capacity (C_{p})
- Heat required to raise one gram of substance $1^{\circ} \mathrm{C}$
- Al; $\mathrm{C}_{\mathrm{p}}=0.895 \mathrm{~J} / \mathrm{gK}$ $\rightarrow 1 \mathrm{cal}=4.184 \mathrm{~J}$
- What is the heat needed to increase 40 g of Al by 10 K
- ($0.895 \mathrm{~J} / \mathrm{gK})(40 \mathrm{~g})(10 \mathrm{~K})=$ 358 J
- Exothermic
- Reaction produces heat (at $25{ }^{\circ} \mathrm{C}$)
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})<-->\mathrm{CO}_{2}(\mathrm{~g})+$
393.76 kJ

Fig. 2. Comparison of experimental and calculated heat capacity of UO_{2}.

Thermodynamic terms

- Endothermic
- Reaction requires energy (at $25{ }^{\circ} \mathrm{C}$)
$2 \mathrm{HgO}+181.70 \mathrm{~kJ}$ <--> $2 \mathrm{Hg}+$ O_{2}

$$
\text { Enthalpy }(\Delta \mathbf{H})
$$

- Energy of a system (heat content)
- Internal energy, volume, pressure
- Accounts for energy transferred to environment by expansion or heating
- $\Delta \mathbf{H}=\Delta \mathbf{H}_{\text {products }}-\Delta \mathbf{H}_{\text {reactants }}$
- Exothermic reactions, negative $\Delta \mathbf{H}$
- Negative ΔH tend to be spontaneous

Fig. 1. Measured values of $H_{T}^{0}-H_{298.15}^{0}$ for UO_{2} and the equations to fit these data.

Enthalpy ($\Delta \mathbf{H}$)

- Bond energies
- Can be used to estimate ΔH
- $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ <--> $2 \mathrm{NH}_{3}$
- 6(351.5)-945.6-3(436.0) = -144.6 kJ/2 mole
$=-72.3 \mathrm{~kJ} / \mathrm{mole}$ (actual - $46.1 \mathrm{~kJ} / \mathrm{mol}$)
- Aqueous Ions (use $\Delta \mathbf{H}$ values, databases available for different states)
- $\Delta \mathbf{H}_{\text {products }}{ }^{-} \Delta \mathbf{H}_{\text {reactants }}$

$$
\begin{aligned}
& \rightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}<-->\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \rightarrow-393.5+(-285.8)-(-677.1+2(0))=-2.2 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$\Delta \mathbf{H}$ determination

Standard Solution

Entropy $(\Delta \mathbf{S})$ and Gibbs Free Energy $(\Delta \mathbf{G})$

- Randomness of a system
- increase in ΔS tends to be spontaneous
- Enthalpy and Entropy can be used for evaluating the free energy of a system
- Gibbs Free Energy
- $\Delta \mathbf{G}=\Delta \mathbf{H}-\mathbf{T} \Delta \mathbf{S}$
- $\Delta \mathbf{G}=-\mathrm{RT} \ln \mathrm{K}$
$\rightarrow \mathrm{K}$ is equilibrium constant
\rightarrow Activity at unity
Compound
$\mathrm{H}_{2} \mathrm{O}$
$\Delta \mathbf{G}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ at 298.15 K
-237.129
$\mathbf{O H}^{-}{ }_{(\mathrm{aq})}$
-157.244
$\mathbf{H}^{+}{ }_{(\mathrm{aq})}$
0

$$
\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

- What is the constant for the reaction?
\rightarrow Products-reactants
- At 298.15 K

$$
\begin{aligned}
& \Delta G(\mathrm{rxn})=0+-157.244-(-273.129)=79.9 \mathrm{~kJ} / \mathrm{mol} \\
& \operatorname{lnK}=(79.9 \mathrm{E} 3 /(-8.314 * 298.15))=-32.2 ; \mathrm{K}=1 \mathrm{E}-14, \mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Thermodynamic Laws

- 1st law of thermodynamics
- Energy is conserved in a system
\rightarrow Can be changed or transferred
- Heat and work are energy transfer
$\rightarrow \Delta \mathrm{E}=\mathbf{q}$ (heat absorbed) $+\mathbf{w}$ (work)
- 2nd law of thermodynamics
- Reactions tend towards equilibrium
\rightarrow Increase in entropy of a system
- Spontaneous reaction for $-\Delta \mathbf{G}$
$\rightarrow \Delta \mathbf{G}=0$, system at equilibrium
- 3rd law of thermodynamics
- Entropies of pure crystalline solids are zero at 0 K
- Defines absolute zero

Redox Reactions: Faraday Laws

- In 1834 Faraday demonstrated quantities of chemicals which react at electrodes are directly proportional to charge passed through the cell
- 96487 Coulomb (C) is the charge on 1 mole of electrons $=$ 1F (faraday)
- $\mathrm{Cu}(\mathrm{II})$ is electrolyzed by a current of $10 \mathrm{~A}(\mathrm{C} / \mathrm{s})$ for 1 hr between Cu electrode
- How much Cu reacts
- anode: $\mathbf{C u}<-->\mathbf{C u}^{2+}+2 \mathrm{e}^{-}$
- cathode: $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$<--> $\mathbf{C u}$
- Number of electrons
$\rightarrow 2$ from redox reaction
* (10A)(3600 sec)/(96487 C/mol) $=0.373$ F
* 0.373 mole é (1 mole Cu/2 mole e-) $=0.186 \mathrm{~mole} \mathrm{Cu}$

Half-cell potentials

- Standard potential
- Defined as $\varepsilon^{\circ}=0.00 \mathrm{~V}$ for

$$
\rightarrow \mathrm{H}_{2}(\mathrm{~atm})<-->2 \mathrm{H}^{+}(1.000 \mathrm{M})+2 \mathrm{e}^{-}
$$

- Other reactions compared to H_{2}
- Cell reaction for
- Zn and $\mathrm{Fe}^{3+/ 2+}$ at 1.0 M
- Write as reduction potentials

$$
\begin{aligned}
& \rightarrow \mathbf{F e}^{3+}+\mathbf{e}^{-<-->} \mathbf{F e}^{2+} \quad \varepsilon^{0}=0.77 \mathrm{~V} \\
& \rightarrow \mathbf{Z n}^{2+}+2 \mathbf{e}^{-}<-->\mathbf{Z n} \quad \varepsilon^{\circ}=-0.76 \mathrm{~V}
\end{aligned}
$$

* Reduction potentials are available http://www.csudh.edu/oliver/chemdata/datae.htm
- Reduction potential for Fe^{3+} is larger
- Fe^{3+} is reduced, Zn is oxidized in reaction

Half-Cell Potentials

- Overall balanced equation
- $2 \mathrm{Fe}^{3+}+\mathrm{Zn}<-->2 \mathrm{Fe}^{2+}+\mathrm{Zn}^{2+} \varepsilon^{\circ}=0.77+0.76=1.53 \mathrm{~V}$
- Use standard reduction potential
- Half cell potential values are not multiplied
- ε° is for a mole of electrons

Application of Gibbs Free Energy

- If work is done by a system
- $\Delta \mathbf{G}=-\varepsilon^{\circ} \mathbf{n F}\left(\mathbf{n}=\mathbf{e}^{-}\right)$
- Find $\Delta \mathrm{G}$ for $\mathrm{Zn} / \mathrm{Cu}$ cell at 1.0 M
- $\mathrm{Cu}^{2+}+\mathrm{Zn}<-->\mathrm{Cu}+\mathrm{Zn}^{2+} \quad \varepsilon^{0}=1.10 \mathrm{~V}$
- 2 moles of electrons ($\mathrm{n}=2$)
$\rightarrow \Delta \mathrm{G}=-2\left(96487 \mathrm{C} / \mathrm{mole} \mathrm{e} \mathrm{e}^{-}\right)(1.10 \mathrm{~V})$
$\rightarrow \Delta \mathrm{G}=-212 \mathrm{~kJ} / \mathrm{mol}$

Nernst Equation

- Compensated for non unit activity (not 1 M)
- Relationship between cell potential and activities
- aA + bB +ne- <--> cC + dD

$$
\varepsilon=\varepsilon^{\circ}-\frac{2.30 \mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

- At 298K 2.3RT/F = 0.0592
- What is potential of an electrode of $\mathrm{Zn}(\mathrm{s})$ and 0.01 M $\mathbf{Z n}^{2+}$
- $\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$---> $\mathrm{Zn} \varepsilon^{0}=-0.763 \mathrm{~V}$
- activity of metal is 1

$$
\varepsilon=-0.763-\frac{0.0592}{2} \log \frac{1}{0.01}=-0.822 \mathrm{~V}
$$

Kinetics and Equilibrium

- Kinetics and equilibrium important concepts in examining and describing chemistry
- Identify factors which determine rates of reactions
\rightarrow Temperature, pressure, reactants, mixing
- Describe how to control reactions
- Explain why reactions fail to go to completion
- Identify conditions which prevail at equilibrium
- Rate of reaction
- Can depend upon conditions
- Free energy does not dictate kinetics
- Thermodynamics can be decoupled from kinetics
- Thermodynamics concerned with difference between initial and final state
- Kinetics account for reaction rates and describe the conditions and mechanisms of reactions
- difficult to describe from first principles
- General factors effecting kinetics
- Nature of reactants
- Effective concentrations
- Temperature
- Presence of catalysts
- Number of steps

Nature of Reactants

- Ions react rapidly
- $\mathrm{Ag}^{+}+\mathrm{Cl}^{-}$---> AgCl(s) Very fast
- Reactions which involve bond breaking are slower
- $\mathrm{NH}_{4}{ }^{+}+\mathrm{OCN}{ }^{-}$<-->OC($\left.\mathrm{NH}_{2}\right)_{2}$
- Redox reactions in solutions are slow
- Transfer of electrons are faster than those of atomic transfer
- Reactions between covalently bonded molecules are slow
- $2 \mathrm{HI}(\mathrm{g})<-->\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
- Structure
- Phosphorus (white and red)
- Surface area
- larger surface area increases reaction
- Mixing increases interaction

Rate Law

- Concentration of reactant or product per unit time
- Effect of initial concentration on rate can be examined
- rate $=k[A]^{x}[B]^{y}$
- rate order $=\mathbf{x}+\mathbf{y}$
- knowledge of order can help control reaction
- rate must be experimentally determined

Rate $=k[A]^{n} ; A=$ conc. at time $t, A_{0}=$ initial conc., $X=$ product conc. Order rate equation
$0 \quad\left[\mathrm{~A}_{0}\right]-[\mathrm{A}]=k t,[\mathrm{X}]=k t$ mole/L sec

$$
1
$$

1

$$
\ln \left[A_{0}\right]-\ln [A]=k t, \ln \left[A_{0}\right]-\ln \left(\left[A_{0}\right]-[X]\right)=k t \quad 1 / s e c
$$

$2 \quad \frac{1}{[A]}-\frac{1}{\left[A_{0}\right]}=k t \quad \frac{1}{\left[A_{0}\right]-[X]}-\frac{1}{\left[A_{0}\right]}=k t \quad \quad L / m o l e ~ s e c$
$3 \quad \frac{1}{[A]^{2}}-\frac{1}{\left[A_{0}\right]^{2}}=\frac{k t}{2} \quad \frac{1}{\left(\left[A_{0}\right]-[X]\right)^{2}}-\frac{1}{\left[A_{0}\right]^{2}}=\frac{k t}{2} \quad L^{2} / \mathrm{mole}_{2-14}^{2} \sec$

Rate Law

- Temperature
- Reactions tend to double for every $10{ }^{\circ} \mathrm{C}$
- Catalysts
- Accelerate reaction but are not used
\rightarrow Pt surface
- Thermodynamically drive, catalysts drive kinetics
- If not thermodynamically favored, catalysts will not drive reaction
- Autocatalytic reactions form products which act as catalysts

Complexation Kinetics

Uranium and cobalt with pyridine based ligands

Examine complexation by UVVisible spectroscopy

Absorbance sum from 250 nm to 325 nm for 111 Py 12 and uranium at $\mathbf{p H} 4$

Kinetic Data Evaluation

Evaluation of change in absorbance

Evaluation of absorbance and kinetic data for 111Py12 and 111Py14 with uranium at pH 4. The concentration of ligand and uranium is $50 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$.

Ligand	$\mathrm{Abs}_{\mathrm{o}}$	$\Delta \mathrm{Abs}_{\text {eq }}$	$\mathrm{k}\left(\mathrm{min}^{-1}\right)$	95% Equilibrium Time (min)
111Py12	7.86 ± 0.82	5.66 ± 1.28	$4.65 \pm 0.47 \times 10^{-5} 6.44 \pm 0.65 \times 10^{4}$	
111 Py 14	4.82 ± 1.70	7.06 ± 5.76	$4.24 \pm 0.80 \times 10^{-5} 7.07 \pm 1.33 \times 10^{4}$	

Acid-Base Equilibria

- Brønsted Theory of Acids and Bases
- Acid
\rightarrow Substance which donates a proton
- Base
\rightarrow Accepts proton from another substance
$\mathrm{NH}_{3}+\mathrm{HCl}<-->\mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl}<-->\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}<-->\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
- Remainder of acid is base
- Complete reaction is proton exchange between sets
- Extent of exchange based on strength
- Water can act as solvent and reactant

Dissociation Constants

- Equilibrium expression for the behavior of acid
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}<-->\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Water concentration is constant

$$
\mathrm{K}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

$\mathbf{p K}_{\mathrm{a}}=-\operatorname{logK}_{\mathrm{a}} \quad \mathrm{K}_{\mathrm{a}}=\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]}$

- Can also be measured for base

Constants are characteristic of the particular acid or base

Acid	$\mathrm{Formula}^{2}$	K
Acetic	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$1.8 \mathrm{E}-5$
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$3.5 \mathrm{E}-7$
	$\mathrm{HCO}_{3}{ }^{-}$	$5 \mathrm{E}-11$
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$7.5 \mathrm{E}-3$
	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$6.2 \mathrm{E}-8$
	$\mathrm{HPO}_{4}{ }^{-}$	$4.8 \mathrm{E}-13$
Oxalic	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$5.9 \mathrm{E}-2$
	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$	$6.4 \mathrm{E}-5$

Calculations

- 1 L of 0.1 M acetic acid has $\mathbf{p H}=2.87$

What is the pK_{a} for acetic acid
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}<-->\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.87}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right. \\
& \mathbf{p K}_{\mathrm{a}}=4.73
\end{aligned}
$$

Buffers: Weak acids and bases

- Weak acid or weak base with conjugate salt
- Acetate as example
- Acetic acid, $\mathrm{CH}_{3} \mathrm{COONa}$
- $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ <--> $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
large quantity huge quantity large quantity small quantity
- If acid is added
\rightarrow hydronium reacts with acetate ion, forming undissociated acetic acid
- If base is added
\rightarrow Hydroxide reacts with hydronium, acetic acid dissociates to replace reacted hydronium ion

Buffer Solutions

- Buffers can be made over a large pH range
- Can be useful in controlling reactions and separations
- Buffer range
\rightarrow Effective range of buffer
\rightarrow Determined by pK_{a} of acid or pK_{b} of base
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$ <--> $\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{-}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
Write as $\mathbf{p H}$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}
$$

- The best buffer is when [HA]=[A-]
- largest buffer range for the conditions
- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ - log1
- For a buffer the range is determined by [HA]/[A-]
- [HA]/[A-] from 0.1 to 10
- Buffer $\mathbf{p H}$ range $=\mathrm{pK}_{\mathrm{a}} \pm 1$
- Higher buffer concentration increase durability

Hydrolysis Constants

- Reaction of water with metal ion
- Common reaction
- Environmentally important
- Strength dependent upon metal ion oxidation state
- $2 \mathrm{H}_{2} \mathrm{O}$ <--> $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
- Water concentration remains constant, so for water:
- $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}-]=1 \mathrm{E}-14$ at $25^{\circ} \mathrm{C}$
- Metal ions can form hydroxide complexes with water
- $\mathrm{M}^{\mathrm{z}^{+}}+\mathrm{H}_{2} \mathrm{O}$ <--> $\mathrm{MOH}^{z-1+}+\mathrm{H}^{+}$
- Constants are listed for many metal ion with different hydroxide amounts
- Database at: http://www.escholarship.org/uc/item/9427347g

Thermodynamics and kinetics

- Thermodynamic laws
- Half-cell reactions
- Kinetics
- Acid-Base
- Equilibrium calculations
- Speciation calculation from complexation constants
- Provide review of concepts for applications to radiochemistry

Equilibrium

- Reactions proceed in the forward and reverse direction simultaneously
- $\mathbf{N}_{2}+3 \mathrm{H}_{2}$ <--> $2 \mathrm{NH}_{3}$
- Initially contains nitrogen and hydrogen
\rightarrow Forward rate decreases as concentration (pressure) decreases
\rightarrow Ammonia production increase reverse rate
\rightarrow Eventually, forward rate is equal to reverse rate
\rightarrow No net change in concentration
- Reaction still occurring at equilibrium
- Forward and backward rates equal
- Some reactions have a negligible reverse rate
- Proceeds in forward direction
- Reaction is said to go to completion

Equilibrium: Le Châtelier's Principle

- At equilibrium, no further change as long as external conditions are constant
- Change in external conditions can change equilibrium
- A stressed system at equilibrium will shift to reduce stress
\rightarrow concentration, pressure, temperature
- $\mathrm{N}_{2}+3 \mathrm{H}_{2}<-->2 \mathrm{NH}_{3}+22 \mathrm{kcal}$
- What is the shift due to
\rightarrow Increased temperature?
\rightarrow Increased N_{2} ?
\rightarrow Reduction of reactor vessel volume?

Equilibrium Constants

- For a reaction
- aA + bB <--> cC + dD
- At equilibrium the ratio of the product to reactants is a constant
- By convention, constants are expressed as products over reactants
- Constant can change with conditions
\rightarrow Temperature, ionic strength
\rightarrow Conditions should explicitly provided

$$
\mathrm{K}=\frac{[\mathrm{C}]^{\mathrm{C}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

- Strictly speaking, activities, not concentrations should be used

$$
\mathrm{K}=\frac{\gamma_{\mathrm{C}}[\mathrm{C}]^{\mathrm{C}} \gamma_{\mathrm{D}}[\mathrm{D}]^{\mathrm{d}}}{\gamma_{\mathrm{A}}[\mathrm{~A}]^{\mathrm{a}} \gamma_{\mathrm{B}}[\mathrm{~B}]^{\mathrm{b}}}
$$

- At low concentration, activities are assumed to be 1
- constant can be evaluated at a number of ionic strengths and the overall activities fit to equations

Activities

- Debye-Hückel (Physik Z., 24, 185 (1923))

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{A}}=\text { charge of species } \mathrm{A} \\
& \mu=\text { molal ionic strength }
\end{aligned} \quad-\log \gamma_{\mathrm{A}}=\frac{0.5085 \mathrm{Z}_{\mathrm{a}}^{2} \sqrt{\mu}}{1+0.3281 \mathrm{R}_{\mathrm{A}} \sqrt{\mu}}
$$

$\mathbf{R}_{\mathrm{A}}=$ hydrated ionic radius in \AA (from 3 to 11)
First estimation of activity

- Debye-Hückel term can be written as:

$$
\mathrm{D}=\frac{0.5107 \sqrt{\mu}}{1+1.5 \sqrt{\mu}}
$$

- Specific ion interaction theory
- Uses and extends Debye-Hückel
\rightarrow long range Debye-Hücke $\quad \log \gamma_{\mathrm{i}}=-Z^{2}{ }^{-} \mathrm{D}+\varepsilon_{\mathrm{ij}} \mu$
\rightarrow Short range ion interaction term $\varepsilon_{\mathrm{ij}}=$ specific ion interaction term
- Pitzer

$$
\log ß(\mu)=\log ß(0)+\Delta Z_{i}^{2} D-\Delta \varepsilon_{i j} \mu
$$

- Binary (3) and Ternary (2) interaction parameters
- http://en.wikipedia.org/wiki/Pitzer_equations

Activity data

Debye Huckel estimates of activity for common clay ions in chloride solutions of various ionic strength at $15^{\circ} \mathrm{C}$

Ionic Strength

Constants

- Constants can be listed by different names
- Equilibrium constants (K)
\rightarrow Reactions involving bond breaking * $2 \mathbf{H X}$ <--> $\mathbf{2 H} \mathbf{H}^{+}+\mathrm{X}_{2}{ }^{2-}$
- Stability constants (ß), Formation constants (K)
\rightarrow Metal-ligand complexation
${ }^{*} \mathbf{P u}^{4+}+\mathrm{CO}_{3}{ }^{2-}$ <--> $\mathrm{PuCO}_{3}{ }^{2+}$
* Ligand is written in deprotonated form
- Conditional Constants
\rightarrow An experimental condition is written into equation $* \mathrm{Pu}^{4+}+\mathrm{H}_{2} \mathrm{CO}_{3}<-->\mathrm{PuCO}_{3}{ }^{2+}+2 \mathrm{H}^{+}$
$\not \approx C o n s t a n t ~ c a n ~ v a r y ~ w i t h ~ c o n c e n t r a t i o n, ~ p H ~$
Must look at equation!

Using Equilibrium Constants

- Constants and balanced equation can be used to evaluate concentrations at equilibrium
- $2 \mathbf{H X}$ <--> $2 \mathbf{H}^{+}+\mathbf{X}_{2}{ }^{2-}$

$$
K=\frac{\left[H^{+}\right]^{2}\left[X_{2}^{2-}\right]}{[H X]^{2}}
$$

- K=4E-15
- If you have one mole of HX initially, what are the concentration of all species at equilibrium?
- Try to write species in terms of one unknown
\rightarrow Start with species of lowest concentration
$\rightarrow\left[\mathbf{X}_{2}{ }^{2}-1=\mathbf{x},\left[\mathbf{H}^{+}\right]=2 \mathbf{x},\left[\mathbf{H X}=1-2 \mathbf{x}, \quad K=\frac{[x][2 x]^{2}}{[1-2 x]^{2}}=\frac{[x][2 x]^{2}}{1}=4 x^{3}\right.\right.$
\rightarrow Usp the approximation $1-2 \mathrm{x} \approx 1$
\rightarrow Substitute x and rearrange $\mathrm{K} \quad 4 E-15=4 x^{3}$
- Solve for x
- $\left[\mathrm{X}_{2}{ }^{2-}\right]=1 \mathrm{E}-5,\left[\mathrm{H}^{+}\right]=2 \mathrm{E}-5$

$$
1 E-15=x^{3}
$$

$$
\chi=1 E-5
$$

Realistic Case

- Metal ion of interest may be in complicated environment
- May different species to consider simultaneously
- Consider uranium in an aquifer
- Example is still a simplified case
- Species to consider in this example include
- free metal ion: $\mathbf{U O}_{2}{ }^{2+}$
- hydroxides: $\left(\mathrm{UO}_{2}\right)_{\mathrm{x}}(\mathrm{OH})_{\mathrm{y}}$
- carbonates: $\mathrm{UO}_{2} \mathrm{CO}_{3}$
- humates: $\mathrm{UO}_{2} \mathbf{H A}(\mathrm{II}), \mathrm{UO}_{2} \mathbf{O H H A}(\mathrm{I})$
- Need to get stability constants for all species
- Example: $\mathrm{UO}_{2}{ }^{2+}+\mathrm{CO}_{3}{ }^{2-}$ <--> $\mathrm{UO}_{2} \mathrm{CO}_{3}$
- Know or find conditions
- Total uranium, total carbonate, pH , total humic concentration

Stability constants for selected uranium species at 0.1 M ionic strength

Species	logß			
$\mathrm{UO}_{2} \mathrm{OH}^{+}$	8.5	Other species may need to be considered. If total uranium		
$\mathrm{UO}_{\mathbf{2}}(\mathrm{OH})_{2}$	17.3	concentration is low enough, $\mathrm{UO}_{2}(\mathrm{OH})_{3}$		
$\mathrm{UO}_{2}(\mathrm{OH})^{2-}$	22.6	23.1		conary or tertiary species can
:---				
be excluded.				

Equations

- Write concentrations in terms of species
- Total uranium in solution, $[\mathrm{U}]_{\text {tot }}$, is the sum of all solution phase uranium species
- $[\mathrm{U}]_{\mathrm{tot}}=\mathrm{UO}_{2}{ }^{2+}{ }_{\text {free }}+\mathrm{U}$-carb+U-hydroxide +U -humate
- $\left[\mathrm{CO}_{3}{ }^{2-}\right]_{\text {free }}=\mathrm{f}(\mathrm{pH})$
\rightarrow From Henry's constant for CO_{2} and K_{1} and K_{2} from $\mathrm{CO}_{3} \mathrm{H}_{2}$
$\rightarrow \log \left[\mathrm{CO}_{3}{ }^{2-}\right]_{\text {free }}=\log \mathrm{K}_{\mathrm{H}} \mathrm{K}_{1} \mathrm{~K}_{2}+\log \left(\mathrm{pCO}_{2}\right)-2 \log \left[\mathrm{H}^{+}\right]$
* With $-\log \left[\mathrm{H}^{+}\right]=\mathbf{p H}$
$\rightarrow \log \left[\mathrm{CO}_{3}{ }^{2-}\right]_{\text {free }}=\log \mathrm{K}_{\mathrm{H}} \mathrm{K}_{1} \mathrm{~K}_{2}+\log \left(\mathrm{pCO}_{2}\right)+2 \mathrm{pH}$
- $\left[\mathrm{OH}^{-}\right]=\mathbf{f}(\mathbf{p H})$
- $[\mathrm{HA}]_{\text {tot }}=\mathrm{UO}_{2} \mathbf{H A}+\mathrm{UO}_{2} \mathrm{OHHA}+\mathrm{HA}_{\text {free }}$

Uranium speciation equations

- Write the species in terms of metal, ligands, and constants
- Generalized equation, with free uranium, free ligand A and free ligand B

$$
\beta_{x a b}=\frac{\left[\left(U O_{2}\right)_{x} A_{a} B_{b}\right]}{\left[U O_{2}^{2+}\right]^{x}[A]^{a}[B]^{b}}
$$

$$
\left[\left(U O_{2}\right)_{x} A_{a} B_{b}\right]=\beta_{x a b}\left[U O_{2}^{2+}\right]^{x}[A]^{a}[B]^{b}
$$

- Provide free ligand and metal concentrations as $\mathbf{p X}$ value

$$
\begin{aligned}
& \rightarrow \mathrm{pX}=-\log [\mathrm{X}]_{\text {free }} \\
& \rightarrow \mathrm{pUO}_{2}{ }^{2+}=-\log \left[\mathrm{UO}_{2}{ }^{2+}\right]
\end{aligned}
$$

- Rearrange equation with pX values
- Include $-\log \beta_{\text {xab }}$, treat as $\mathbf{p X}$ term
- $\left.\left[\left(\mathrm{UO}_{2}\right)_{\mathrm{x}} \mathrm{A}_{\mathrm{a}} \mathrm{B}_{\mathrm{b}}\right]=\mathbf{1 0}^{-(\mathrm{xpUO} 2+\mathrm{apA}+\mathrm{bpB}-\log }{ }_{\mathrm{xab}}\right)$
- Specific example for $\left(\mathrm{UO}_{2}\right)_{2}(\mathrm{OH})_{2}{ }^{2+}$
- $\left[\left(\mathrm{UO}_{2}\right)_{2}(\mathrm{OH})_{2}{ }^{2+}\right]=10$-(2pUO2+2pOH-22.0)
- Set up equations where total solution uranium concentration is sum of all species and solve for known terms

Speciation calculations: Excel spreadsheets CHESS Program

U speciation with different CO_{2} partial pressure

Comparison of measured and calculated uranyl organic colloid

File Models Actions Settings About

Main solution	Solids	Reactions	Sorption	Database	Output	Piper
JPlot						

Redox state
enabled
(0) disabled
set by

Activity-correction models

Energy terms

- Constants can be used to evaluate energetic of reaction
- From Nernst equation $\rightarrow \Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}$
- $\Delta \mathbf{G}=\Delta \mathbf{H}-\mathrm{T} \Delta \mathbf{S}$
$\rightarrow-\mathrm{RT} \ln \mathrm{K}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\rightarrow R \operatorname{lnK}=-\Delta H / T+\Delta S$
* Plot RInK vs $1 / T$

Solubility Products

- Equilibrium involving a solid phase
- $\mathrm{AgCl}(\mathrm{s})<-->\mathrm{Ag}^{+}+\mathrm{Cl}^{-}$

$$
\mathrm{K}=\frac{\left[\mathrm{Cl}^{-}\right]\left[\mathrm{Ag}^{+}\right]}{[\mathrm{AgCl}]}
$$

- AgCl concentration is constant
\rightarrow Solid activity and concentration is treated as constant
\rightarrow By convention, reaction goes from solid to ionic phase in solution
- Can use $\mathrm{K}_{\text {sp }}$ for calculating concentrations in solution

$$
\mathrm{K}_{\mathrm{sp}}=\mathrm{K}[\mathrm{AgCl}]=\left[\mathrm{Cl}^{-}\right]\left[\mathrm{Ag}^{+}\right]
$$

Solubility calculations

- $\mathrm{AgCl}(\mathrm{s})$ at equilibrium with water at $25^{\circ} \mathrm{C}$ gives 1E-5 M silver ion in solution. What is the $K_{\text {sp }}$??
- $\mathrm{AgCl}(\mathrm{s})<-->\mathrm{Ag}^{+}+\mathrm{Cl}^{-}:\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Cl}^{-}\right]$
- $\mathrm{K}_{\text {sp }}=1 \mathrm{E}-5^{2}=1 \mathrm{E}-10$
- What is the $\left[\mathrm{Mg}^{2+}\right]$ from $\mathrm{Mg}(\mathrm{OH})_{2}$ at pH 10 ?
- $\mathrm{K}_{\mathrm{sp}}=1.2 \mathrm{E}-11=\left[\mathrm{Mg}^{2+}\right][\mathrm{OH}]^{2}$
- $[\mathrm{OH}]=10^{-(14-10)}$

$$
\left[\mathrm{Mg}^{2+}\right]=\frac{1.2 \mathrm{E}-11}{1 \mathrm{E}-8}=1.2 \mathrm{E}-3
$$

Solubility calculations

- $\mathrm{K}_{\text {sp }}$ of $\mathrm{UO}_{2}=10^{-52}$. What is the expected U^{4+} concentration at pH 6. Generalize equation for any pH
- Solubility reaction:

$$
\rightarrow \mathrm{UO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \leftarrow \cup \mathrm{U}(\mathrm{OH})_{4} \leftrightarrow \rightarrow \mathrm{U}^{4+}+4 \mathrm{OH}^{-}
$$

- $\quad \mathrm{K}_{\text {sp }}=\left[\mathrm{U}^{4+}\right]\left[\mathrm{OH}^{-}\right]^{4}$
- $\quad\left[\mathrm{U}^{4+}\right]=\mathrm{K}_{\text {sp }} /\left[\mathrm{OH}^{-}\right]^{4}$
$\rightarrow \mathrm{pOH}+\mathrm{pH}=14$
\rightarrow At pH 6, pOH $=8,\left[\mathrm{OH}^{-}\right]=10^{-8}$
- $\quad\left[\mathrm{U}^{4+}\right]=10^{-52} /\left[10^{-8}\right]^{4}=10^{-52} / 10^{-32}=10^{-20} \mathrm{M}$
- For any pH

$$
\rightarrow\left[\mathrm{U}^{4+}\right]=10^{-52} /\left[10^{-(14-\mathrm{pH})^{*} 4}\right]
$$

$$
\curvearrowright \log \left[\mathrm{U}^{4+}\right]=-52+((14-\mathrm{pH}) * 4)
$$

Limitations of $\mathbf{K}_{\text {sp }}$

- Solid phase formation limited by concentration
- below $\approx 1 \mathrm{E}-5 / \mathrm{mL}$ no visible precipitate forms
\rightarrow colloids
- formation of supersaturated solutions
- slow kinetics
- Competitive reactions may lower free ion concentration
- Large excess of ligand may form soluble species
- $\mathrm{AgCl}(\mathrm{s})+\mathrm{Cl}^{-}$<--> $\operatorname{AgCl}_{2}^{-}(\mathrm{aq})$
$\underline{K}_{\underline{s p}}$ really best for slightly soluble salts

Overview

- Understand heats of reactions
- Enthalpy, entropy, Gibbs free energy
- Reaction data from constituents
- Understand half-cell reactions
- Nernst Equation
- Kinetics
- Influence of reaction conditions
- Equilibrium and constants
- Use to develop a speciation spreadsheet

Questions

- What is the difference between $1^{\text {st }}$ and $2^{\text {nd }}$ order kinetics?
- What can impact reaction rates?
- How can a compound act as a base and acid? Provide an example.
- What does the dissociation constant of an acid provide?
- Provide the speciation of acetic acid at pH 3.5, 4.5, and 5.5.
- What are the species from carbonic acid at pH 4.0 , 6.0 , and 8.0 ?
- Set up the equations to describe the speciation of uranyl, the uranyl monocarbonate, and the uranyl dicarbonate.

Questions

- Comment in blog
- Respond to PDF questions

