Thermodynamics and kinetics

- Thermodynamic laws
- Half-cell reactions
- Kinetics
- Acid-Base
- Equilibrium calculations
 - Speciation calculation from complexation constants
- Provide review of concepts for applications to radiochemistry

Thermodynamic terms

- Heat Capacity (C_p)
 - Heat required to raise one gram of substance 1 °C
 - Al; C_p = 0.895 J/gK
 →1 cal = 4.184 J
 - What is the heat needed to increase 40 g of Al by 10 K
 - (0.895 J/gK)(40g)(10K)= 358 J
- Exothermic
 - Reaction produces heat (at 25 °C)
 - $C(s) + O_2(g) < --> CO_2(g) + 393.76 \text{ kJ}$

Fig. 2. Comparison of experimental and calculated heat capacity of UO_2 .

Thermodynamic terms

Fig. 1. Measured values of $H_T^0 - H_{298,15}^0$ for UO₂ and the equations to fit these data.

Enthalpy (ΔH)

- Bond energies
 - Can be used to estimate ΔH
 - $N_2 + 3 H_2 < --> 2 NH_3$
 - 6(351.5)-945.6-3(436.0) = -144.6 kJ/2 mole
 - =-72.3 kJ/mole (actual -46.1 kJ/mol)
- Aqueous Ions (use ∆H values, databases available for different states)

ΔH (letermina	tion	Ag+	Standard Solution
Reactants at T ₂	ΔH_{T2}	\rightarrow Products at T ₂	$\begin{array}{c} AgCl_{2}^{-} \\ Ag(NH_{3})^{2+} \\ Ag(S_{2}O_{3})_{2}^{-} \\ Al^{3+} \end{array}$	-245.2 -111.29 -1285.7 -531
∆H _{reactants}	$= (\Sigma C_p)(T_2-298) \Delta H_{\text{products}} =$	(ΣC _p)(298-Τ ₂)	Br- BrO ₃ - C a^{2+} C d^{2+} C $d(CN)_4^{2-}$ C $d(NH_3)_4^{2+}$ C e^{3+} C e^{4+} CH ₃ COO- CH ₃ COOH CN-	-121.55 -67.07 -542.83 -75.9 428 -450.2 -696.2 -537.2 -486.01 -485.76 150.6
Reactants at 298 K				
ΣC_p is the	sum of the heat of	capacities	CO_2 CO_3^2 - H+ H ₂ O ₂	-413.8 -677.14 0 -191.17
CaC ₂ O ₄ (c) CaF ₂ (c) Ca ₃ (PO ₄) ₂ (c) CaSO4(c,anhyd) Cd(g) Cd ²⁺ (g) Cd(OH) ₂ (c) CdS(c) Cl(g) Cl-(g) ClO ₂ (g) Cu(g) Cu(g) Cu ₂ O(c,cuprite) CuO(c,tenorite) Cu(OH) ₂ (c) Cu2S(c,chalcoc) CuS(c,covellite)	$\begin{array}{c} -1360.6 \\ -1219.6 \\ -4109.9 \\ -1434.1 \\ 2623.54 \\ 112.01 \\ -560.7 \\ -161.9 \\ 121.679 \\ -233.13 \\ 102.5 \\ 338.32 \\ -168.6 \\ -157.3 \\ -449.8 \\ ite) \\ -79.5 \\ -53.1 \end{array}$		$ I-I_{3}-I_{0}-I_{3}-I_{0}-I_{3}-I_{0}-I_{3}-I_{1}-I_{3}-I_{1}-I_{3}-I_{1}-I_{3}-I_$	-55.19 -51.5 -221.3 -252.38 -80.29 -132.51 -205 -240.12 -229.99 -11.7 -909.27 -8.8 -545.8 196.6 -591.2 -1019.6
F(g) F-(g) Fe(g)	-53.1 78.99 -255.39 416.3			2-5

Entropy (\DeltaS) and Gibbs Free Energy (\DeltaG)

- Randomness of a system
 - increase in ΔS tends to be spontaneous
- Enthalpy and Entropy can be used for evaluating the free energy of a system
- Gibbs Free Energy
 - $\Delta \mathbf{G} = \Delta \mathbf{H} \mathbf{T} \Delta \mathbf{S}$
 - △G=-RTlnK
 - \rightarrow K is equilibrium constant
 - \rightarrow Activity at unity

Compound	$\Delta \mathbf{G}^{\circ}$ (kJ/mol) at 298.15 K
H ₂ O	-237.129
OH-(aq)	-157.244
$\mathbf{H}^{+}_{(aq)}$	0
×	$H_2O \leftarrow \rightarrow H^+ + OH^-$

- What is the constant for the reaction?
 - \rightarrow Products-reactants
- At 298.15 K

 $\Delta G(rxn) = 0 + -157.244 - (-273.129) = 79.9 \text{ kJ/mol}$ lnK= (79.9E3/(-8.314*298.15))=-32.2; K=1E-14, K_w = [H⁺][OH⁻] > 6

Thermodynamic Laws

- 1st law of thermodynamics
 - Energy is conserved in a system
 →Can be changed or transferred
 - Heat and work are energy transfer
 →∆E = q (heat absorbed) + w (work)
- 2nd law of thermodynamics
 - Reactions tend towards equilibrium
 - →Increase in entropy of a system
 - Spontaneous reaction for $-\Delta G$ $\rightarrow \Delta G = 0$, system at equilibrium
- 3rd law of thermodynamics
 - Entropies of pure crystalline solids are zero at 0 K
 - Defines absolute zero

Redox Reactions: Faraday Laws

- In 1834 Faraday demonstrated quantities of chemicals which react at electrodes are directly proportional to charge passed through the cell
 - 96487 Coulomb (C) is the charge on 1 mole of electrons = 1F (faraday)
- Cu(II) is electrolyzed by a current of 10 A (C/s) for 1 hr between Cu electrode
 - How much Cu reacts
- anode: Cu <--> Cu²⁺ + 2e⁻
- cathode: Cu²⁺ + 2e⁻ <--> Cu
 - Number of electrons
 - \rightarrow 2 from redox reaction
 - * (10A)(3600 sec)/(96487 C/mol) = 0.373 F
 - * 0.373 mole e⁻ (1 mole Cu/2 mole e⁻) = 0.186 mole Cu

Half-cell potentials

- Standard potential
 - Defined as $\varepsilon^{\circ}=0.00$ V for

 \rightarrow H₂(atm) <--> 2 H⁺ (1.000M) + 2e⁻

- Other reactions compared to H₂
- Cell reaction for
 - Zn and Fe^{3+/2+} at 1.0 M
 - Write as reduction potentials

 \rightarrow Fe³⁺ + e⁻ <--> Fe²⁺ ϵ° =0.77 V

 \rightarrow Zn²⁺ + 2e⁻ <-->Zn ϵ° =-0.76 V

* Reduction potentials are available <u>http://www.csudh.edu/oliver/chemdata/data-</u> <u>e.htm</u>

- Reduction potential for Fe³⁺ is larger
 - Fe³⁺ is reduced, Zn is oxidized in reaction

Half-Cell Potentials

- Overall balanced equation
 - $2Fe^{3+} + Zn \iff 2Fe^{2+} + Zn^{2+} \epsilon^{\circ} = 0.77 + 0.76 = 1.53 V$
- Use standard reduction potential
- Half cell potential values are <u>not</u> multiplied
 - ϵ° is for a mole of electrons

Application of Gibbs Free Energy

• If work is done by a system

• $\Delta \mathbf{G} = -\mathbf{\varepsilon}^{\circ} \mathbf{n} \mathbf{F} (\mathbf{n} = \mathbf{e}^{\circ})$

- Find ΔG for Zn/Cu cell at 1.0 M
 - $Cu^{2+} + Zn \iff Cu + Zn^{2+} \epsilon^{\circ} = 1.10 V$
 - 2 moles of electrons (n=2) $\rightarrow \Delta G = -2(96487 \text{C/mole e}^{-})(1.10 \text{V})$ $\rightarrow \Delta G = -212 \text{ kJ/mol}$

Nernst Equation

- Compensated for non unit activity (not 1 M)
- Relationship between cell potential and activities
- $aA + bB + ne^{-} < --> cC + dD$

$$\varepsilon = \varepsilon^{\circ} - \frac{2.30\text{RT}}{\text{nF}} \log \frac{[\text{C}]^{c}[\text{D}]^{d}}{[\text{A}]^{a}[\text{B}]^{b}}$$

- At 298K 2.3RT/F = 0.0592
- What is potential of an electrode of Zn(s) and 0.01 M Zn^{2+}
- $Zn^{2+} + 2e^{-} < --> Zn \quad \epsilon^{\circ} = -0.763 V$
- activity of metal is 1

$$\varepsilon = -0.763 - \frac{0.0592}{2} \log \frac{1}{0.01} = -0.822 \text{V}$$

Kinetics and Equilibrium

- Kinetics and equilibrium important concepts in examining and describing chemistry
 - Identify factors which determine rates of reactions
 - \rightarrow Temperature, pressure, reactants, mixing
 - Describe how to control reactions
 - Explain why reactions fail to go to completion
 - Identify conditions which prevail at equilibrium
- Rate of reaction
 - Can depend upon conditions
- Free energy does not dictate kinetics
 - Thermodynamics can be decoupled from kinetics
- Thermodynamics concerned with difference between initial and final state
- Kinetics account for reaction rates and describe the conditions and mechanisms of reactions
 - difficult to describe from first principles
- General factors effecting kinetics
 - Nature of reactants
 - Effective concentrations
 - Temperature
 - Presence of catalysts
 - Number of steps

Nature of Reactants

- Ions react rapidly
 - Ag⁺ + Cl⁻ <--> AgCl(s) Very fast
- Reactions which involve bond breaking are slower
 - $NH_4^+ + OCN^- < -->OC(NH_2)_2$
- Redox reactions in solutions are slow
 - Transfer of electrons are faster than those of atomic transfer
- Reactions between covalently bonded molecules are slow
 - 2 HI(g) <--> H₂(g) + I₂(g)
- Structure
 - Phosphorus (white and red)
- Surface area
 - larger surface area increases reaction
- Mixing increases interaction

Rate Law

- **Concentration of reactant or product per unit time**
- Effect of initial concentration on rate can be examined
 - rate = $k[A]^x[B]^y$
 - rate order = x + y
 - knowledge of order can help control reaction
 - rate must be experimentally determined

Rate=k[A]ⁿ; A=conc. at time t, A_o=initial conc., X=product conc. **Order** rate equation

$$0 [A_0]-[A]=kt, [X]=kt$$

1
$$\ln[A_0]-\ln[A]=kt, \ln[A_0]-\ln([A_0]-[X])=kt$$
 1/sec
2 $\frac{1}{[A]}-\frac{1}{[A_0]}=kt$ $\frac{1}{[A_0]-[X]}-\frac{1}{[A_0]}=kt$ L/mole sec

3
$$\frac{1}{[A]^2} - \frac{1}{[A_0]^2} = \frac{kt}{2} \frac{1}{([A_0] - [X])^2} - \frac{1}{[A_0]^2} = \frac{kt}{2} \frac{L^2}{mole_{2-14}^2}$$

Rate Law

- Temperature
 - Reactions tend to double for every 10 °C
- Catalysts
 - Accelerate reaction but are not used
 →Pt surface
 - Thermodynamically drive, catalysts drive kinetics
 - If not thermodynamically favored, catalysts will not drive reaction
- Autocatalytic reactions form products which act as catalysts

Complexation Kinetics

Uranium and cobalt with pyridine based ligands

Examine complexation by UV-Visible spectroscopy Absorbance sum from 250 nm to 325 nm for 111Py12 and uranium at pH 4

Kinetic Data Evaluation

Evaluation of change in absorbance

$$\int_{\lambda_{1}}^{\lambda_{2}} Abs_{t} = \int_{\lambda_{1}}^{\lambda_{2}} Abs_{o} + \int_{\lambda_{1}}^{\lambda_{2}} \Delta Abs_{eq} (1 - e^{-kt})$$

Evaluation of absorbance and kinetic data for 111Py12 and 111Py14 with uranium at pH 4. The concentration of ligand and uranium is 50x10⁻⁶ mol/L.

Ligand	Abs _o	ΔAbs_{eq}	k (min ⁻¹)	95% Equilibrium
		1		Time (min)
111Py12	7.86 ± 0.82	5.66 ± 1.28	$4.65 \pm 0.47 \times 10^{-5}$	$6.44 \pm 0.65 \times 10^4$
111Py14	4.82 ± 1.70	7.06 ± 5.76	$4.24\pm0.80 ext{x}10^{-5}$	$7.07 \pm 1.33 \times 10^4$

Acid-Base Equilibria

- **Brønsted Theory of Acids** and Bases
- Acid **Conjugate Acid** HClO₄ \rightarrow Substance which H₂SO₄ donates a proton Acid HCI Base Strength H_3O^+ H_2SO_3 \rightarrow Accepts proton from HF another substance HC₂H₃O₂ $NH_3 + HCl < --> NH_4^+ + Cl^-$ HSO₂- $H_2O + HCl <--> H_3O^+ + Cl^-$ H₂S NH_4^+ $NH_3 + H_2O <--> NH_4^+ + OH^-$ HCO₃ **Remainder of acid is base H₂O** HS-**Complete reaction is proton** OH exchange between sets Η,
- **Extent of exchange based on** strength
- Water can act as solvent and reactant

l	Conjugate	Base
	ClO ₄ -	
	SO ₄ ²⁻	n
	Cl	Bas
	H ₂ O	Str
	HSO ₃ -	
	F -	
	$C_2H_3O_2$	
	SO_3^2	
	HS ⁻	
	NH ₃	
	CO ₃ ²⁻	
	OH-	
	S ²⁻	
	O ²⁻	

H

Strength

Base

Dissociation Constants

• Equilibrium expression for the behavior of acid HA + H₂O <--> A⁻ + H₃O⁺ $K = \frac{1}{K}$

Water concentration is constant

$$K = \frac{[A^{-}][H_{3}O^{+}]}{[HA][H_{2}O]}$$

2 - 19

$$K_a = K[H_2O] = \frac{[A^-][H_3O^+]}{[HA]}$$

• Can also be measured for base

pK_a=-logK_a

Constants are characteristic of the particular acid or base

Acid	Formula	K _a
Acetic	$HC_2H_3O_2$	1.8E-5
Carbonic	H ₂ CO ₃	3.5E-7
	HCO ₃ -	5E-11
Phosphoric	H ₃ PO ₄	7.5E-3
	$H_2PO_4^-$	6.2E-8
	HPO ₄ ²⁻	4.8E-13
Oxalic	$H_2C_2O_4$	5.9E-2
	HC_2O_4	6.4E-5

Calculations

• 1 L of 0.1 M acetic acid has pH = 2.87What is the pK_a for acetic acid $CH_3COOH + H_2O < --> CH_3COO^- + H_3O^+$ $[CH_3COO^-] = [H_3O^+] = 10^{-2.87}$

$$K_a = K[H_2O] = \frac{[A^-][H_3O^+]}{[HA]}$$
 $K_a = \frac{10^{-(2*2.87)}}{0.1 - 10^{-2.87}} = 1.84 \times 10^{-5}$

pK_a=4.73

Buffers: Weak acids and bases

- Weak acid or weak base with conjugate salt
- Acetate as example
 - Acetic acid, CH₃COONa
 - $CH_3COOH + H_2O \iff CH_3COO^- + H_3O^+$

large quantity huge quantity large quantity small quantity

If acid is added

→hydronium reacts with acetate ion, forming undissociated acetic acid

If base is added

→Hydroxide reacts with hydronium, acetic acid dissociates to replace reacted hydronium ion

Buffer Solutions

- Buffers can be made over a large pH range
- Can be useful in controlling reactions and separations
 - Buffer range

→Effective range of buffer

 \rightarrow Determined by pK_a of acid or pK_b of base

 $\mathbf{HA} + \mathbf{H}_2\mathbf{O} < --> \mathbf{A}^- + \mathbf{H}_3\mathbf{O}^-$

$$[H_3O^+] = \frac{K_a[HA]}{[A^-]}$$

Write as pH

 $K_a = \frac{[A^-][H_3O^+]}{[HA]}$

$$pH = pK_a - \log\frac{[HA]}{[A^-]}$$

- The best buffer is when [HA]=[A⁻]
 - largest buffer range for the conditions
 - $pH = pK_a log1$
- For a buffer the range is determined by [HA]/[A⁻]
 - [HA]/[A⁻] from 0.1 to 10
 - Buffer pH range = pK_a ± 1
 - Higher buffer concentration increase durability

Hydrolysis Constants

- Reaction of water with metal ion
 - Common reaction
 - Environmentally important
 - Strength dependent upon metal ion oxidation state
- $2 H_2 O <--> H_3 O^+ + OH^-$
 - Water concentration remains constant, so for water:
 - $K_w = [H_3O^+][OH^-] = 1E-14 \text{ at } 25^\circ C$
- Metal ions can form hydroxide complexes with water
- $M^{z+} + H_2O <--> MOH^{z-1+} + H^+$
- Constants are listed for many metal ion with different hydroxide amounts
 - Database at: <u>http://www.escholarship.org/uc/item/9427347g</u>

Thermodynamics and kinetics

- Thermodynamic laws
- Half-cell reactions
- Kinetics
- Acid-Base
- Equilibrium calculations
 - Speciation calculation from complexation constants
- Provide review of concepts for applications to radiochemistry

Equilibrium

- Reactions proceed in the forward and reverse direction simultaneously
 - $N_2 + 3 H_2 < --> 2 NH_3$
 - Initially contains nitrogen and hydrogen
 - →Forward rate decreases as concentration (pressure) decreases
 - →Ammonia production increase reverse rate
 - →Eventually, forward rate is equal to reverse rate
 - \rightarrow No net change in concentration
- Reaction still occurring at equilibrium
 - Forward and backward rates equal
- Some reactions have a negligible reverse rate
 - Proceeds in forward direction
 - Reaction is said to go to completion

Equilibrium: <u>Le Châtelier's Principle</u>

- At equilibrium, no further change as long as external conditions are constant
- Change in external conditions can change equilibrium
 - A stressed system at equilibrium will shift to reduce stress
 - →concentration, pressure, temperature
- $N_2 + 3 H_2 < --> 2 NH_3 + 22 kcal$
 - What is the shift due to
 - →Increased temperature?
 - \rightarrow Increased N₂?
 - →Reduction of reactor vessel volume?

Equilibrium Constants

- For a reaction
 - **aA** + **bB** <--> **cC** + **dD**
- At equilibrium the ratio of the product to reactants is a constant
 - By convention, constants are expressed as products over reactants
 - Constant can change with conditions

 → Temperature, ionic strength
 → Conditions should explicitly provided

• Strictly speaking, activities, not concentrations should be used

$$K = \frac{\gamma_{C}[C]^{c} \gamma_{D}[D]^{a}}{\gamma_{A}[A]^{a} \gamma_{B}[B]^{b}}$$

- At low concentration, activities are assumed to be 1
- constant can be evaluated at a number of ionic strengths and the overall activities fit to equations

Activities

• Debye-Hückel (Physik Z., 24, 185 (1923))

- Binary (3) and Ternary (2) interaction parameters
 http://op.wikipedia.org/wiki/Ditger_equations
- http://en.wikipedia.org/wiki/Pitzer_equations

Activity data

Debye Huckel estimates of activity for common clay ions in chloride solutions of various ionic strength at 15° C

Constants

- Constants can be listed by different names
 - Equilibrium constants (K)
 - \rightarrow Reactions involving bond breaking

* 2 HX <--> $2H^+ + X_2^{2-}$

- Stability constants (B), Formation constants (K)
 - →Metal-ligand complexation
 - $* Pu^{4+} + CO_3^{2-} <--> PuCO_3^{2+}$
 - * Ligand is written in deprotonated form
- Conditional Constants
 - →An experimental condition is written into equation * Pu⁴⁺ + H₂CO₃ <--> PuCO₃²⁺ +2H⁺

%Constant can vary with concentration, pH

Must look at equation!

Using Equilibrium Constants

- Constants and balanced equation can be used to evaluate concentrations at equilibrium $[H^+]^2[X_2^{-}]$
 - 2 HX <--> $2H^+ + X_2^{2-}$
 - K=4E-15

Solve for x

 $[X_{2}^{2}]=1E-5, [H^{+}]=2E^{+}5$

- If you have one mole of HX initially, what are the concentration of all species at equilibrium?
- Try to write species in terms of one unknown
 →Start with species of lowest concentration
 →[X₂²⁻]=x, [H⁺]=2x, [HX]=1-2x, [x][2x]²
- Since K is small, x must be small \rightarrow Use the approximation $1-2x \approx 1$ \rightarrow Substitute x and rearrange K 4E-1

$$K = \frac{[x][2x]^2}{[1-2x]^2} = \frac{[x][2x]^2}{1} = 4x$$

$$4E - 15 = 4x^{3}$$
$$1E - 15 = x^{3}$$
$$x = 1E - 5$$

Realistic Case

- Metal ion of interest may be in complicated environment
 - May different species to consider simultaneously
- Consider uranium in an aquifer
 - Example is still a simplified case
- Species to consider in this example include
 - free metal ion: UO₂²⁺
 - hydroxides: (UO₂)_x(OH)_y
 - carbonates: UO₂CO₃
 - humates: UO₂HA(II), UO₂OHHA(I)
- Need to get stability constants for all species
 - Example: $UO_2^{2+} + CO_3^{2-} < --> UO_2CO_3$
- Know or find conditions
 - Total uranium, total carbonate, pH, total humic concentration

Stability constants for selected uranium species at 0.1 M ionic strength

Species	logß
UO₂ OH ⁺	8.5
$UO_2(OH)_2$	17.3
$UO_2(OH)_3$	22.6
$UO_2(OH)_4^{2-}$	23.1
$(UO_2)_2OH^{3+}$	11.0
$(UO_2)_2(OH)^{2+}$	22.0
UO ₂ CO ₃	8.87
$UO_2(CO_3)_2^{-2}$	16.07
$UO_2(CO_3)_3^{4-}$	21.60
UO ₂ HA(II)	6.16
UO ₂ (OH)HA(I)	14.7±0.5

Other species may need to be considered. If total uranium concentration is low enough, binary or tertiary species can be excluded.

Equations

- Write concentrations in terms of species
- Total uranium in solution, [U]_{tot}, is the sum of all solution phase uranium species
 - [U]_{tot} = UO₂²⁺_{free}+U-carb+U-hydroxide+U-humate
 - $[CO_3^2]_{\text{free}} = f(pH)$
 - →From Henry's constant for CO₂ and K₁ and K₂ from CO₃H₂
 - $\rightarrow \log[CO_3^{2-}]_{free} = \log K_H K_1 K_2 + \log(pCO_2) 2\log[H^+]$ * With -log[H⁺]=pH
 - $\rightarrow \log[CO_3^{2-}]_{\text{free}} = \log K_H K_1 K_2 + \log(pCO_2) + 2pH$
 - $[OH^-] = f(pH)$
 - $[HA]_{tot} = UO_2HA + UO_2OHHA + HA_{free}$

Uranium speciation equations

- Write the species in terms of metal, ligands, and constants
 - Generalized equation, with free uranium, free ligand A and free ligand B

$$\beta_{xab} = \frac{[(UO_2)_x A_a B_b]}{[UO_2^{2+}]^x [A]^a [B]^b}$$

$$[(UO_2)_x A_a B_b] = \beta_{xab} [UO_2^{2+}]^x [A]^a [B]^b$$

Provide free ligand and metal concentrations as pX value

$$\rightarrow$$
 pX = -log[X]_{free}

$$\rightarrow$$
 pUO₂²⁺=-log[UO₂²⁺]

- Rearrange equation with pX values
 - Include $-\log\beta_{xab}$, treat as pX term
 - $[(UO_2)_xA_aB_b] = 10^{-(xpUO2+apA+bpB-log_{xab})}$
- Specific example for $(UO_2)_2(OH)_2^{2+}$

• $[(UO_2)_2(OH)_2^{2+}]=10^{-(2pUO2+2pOH-22.0)}$

• Set up equations where total solution uranium concentration is sum of all species and solve for known terms 2-35

Speciation calculations: Excel spreadsheets CHESS Program

X	I 9	• 64	- -	ALC: N	U, 0.035%CC	D2 speccalc	(1) [Com	patibili	ty Mode] - I	Microsoft Excel			. 🗆 X
Fi	ile	Home	Insert	Page Layo	ut Formula	as Data	Review	View	Add-Ins	Acrobat		۵	😮 🗆 🗗 🗙
Norr	nal Pa Lay	ge out Workbo	Page Break Custom Vie Full Screen ok Views	Preview ws	how Zoom	100% Zo Zoom	om to lection	New W Arrange Freeze	indow 📑 e All 📑 Panes 🕶 🗔 W	Save Workspace	Switch ce Windows *	Macros Macros	
	F	7	- (-	f	4								~
- 24	Α	A	В	С	D	E	F	G	Н	Ē	J	K	L
1		_		pka1co3	pka2co3	logksum		рКw	UO2HA	UO2OHHA	UO2OH	UO2(OH)2	UO2(OH)3
2				6.30	10.25	-17.55		13.92	logB1100	logB11-10	logK10-10	logK10-20	logk10-30
3									6.16	14.70	-5.40	-10.50	-19.20
4	ъЦ	ъЦ	nn CO2	ILIO01H M		NC091f	54∧(II)f	nМ				(U(OH)2)	[U(OH)8]
6	1.0	1.0	3 50E-04	2 00E-07	3.00E-04	19.01	2 00	2 00	1 45E-05	1 21 F-09	3 98F-12	3 16E-16	6.31E-22
7	11	11	3 50E-04	2.00E-07	3.00E-04	18.81	4 00	7.00	1.40E 00	1.52E-09	5.01E-12	5.01E-16	1.26E-25
8	1.2	1.2	3.50E-04	2.00E-07	3.00E-04	18.61	4.00	7.00	1.45E-05	1.91E-09	6.31E-12	7.94E-16	2.51E-23
9	1.3	1.3	3.50E-04	2.00E-07	3.00E-04	18.41	4.00	7.00	1.45E-05	2.40E-09	7.94E-12	1.26E-15	5.01E-23
10	1.4	1.4	3.50E-04	2.00E-07	3.00E-04	18.21	4.00	7.00	1.45E-05	3.03E-09	1.00E-11	2.00E-15	1.00E-22
11	1.5	1.5	3.50E-04	2.00E-07	3.00E-04	18.01	4.00	7.00	1.45E-05	3.81E-09	1.26E-11	3.16E-15	2.00E-22
12	1.6	1.6	3.50E-04	2.00E-07	3.00E-04	17.81	4.00	7.00	1.45E-05	4.80E-09	1.58E-11	5.01E-15	3.98E-22
13	1.7	1.7	3.50E-04	2.00E-07	3.00E-04	17.61	4.00	7.00	1.45E-05	6.04E-09	2.00E-11	7.94E-15	7.94E-22
14	1.8	1.8	3.50E-04	2.00E-07	3.00E-04	17.41	4.00	7.00	1.45E-05	7.60E-09	2.51E-11	1.26E-14	1.58E-21
15	1.9	1.9	3.50E-04	2.00E-07	3.00E-04	17.21	4.00	7.00	1.45E-05	9.57E-09	3.16E-11	2.00E-14	3.16E-21
16	2.0	2.0	3.50E-04	2.00E-07	3.00E-04	17.01	4.00	7.00	1.45E-05	1.21E-08	3.98E-11	3.16E-14	6.31E-21
17	2.1	2.1	3.50E-04	2.00E-07	3.00E-04	16.81	4.00	7.00	1.45E-05	1.52E-08	5.01E-11	5.01E-14	1.26E-20
18	2.2	2.2	3.50E-04	2.00E-07	3.00E-04	16.61	4.00	7.00	1.45E-05	1.91E-08	6.31E-11	7.94E-14	2.51E-20
19	2.3	2.3	3.50E-04	2.00E-07	3.00E-04	10.41	4.00	7.00	1.45E-05	2.40E-08	7.94E-11	1.20E-13	5.01E-21
14 4													
Rea	dy 📫	-	_	-		-	_	_	-		山田 100%	0	
												2-	-37

XI	. 1	• 64 •	-	THE OWNER	U, 0.035%CC	D2 speccalc	(1) [Com	patibilit	ty Mode] - I	Microsoft Excel			. 🗆 X
Fil	e	Home	Insert	Page Layou	it Formula	as Data	Review	View	Add-Ins	Acrobat		۵	3 - 6 ×
Norm	nal Pag Layo	j I je out I Vorkboo	Page Break Custom Viev Full Screen ok Views	Preview (f	S Q IOW Zoom	100% Zoo Sel Zoom	om to ection	New W Arrange Freeze	indow 📑 e All 📑 Panes 🕶 🗔 W	III Save Save Workspace /indow	Switch ce Windows *	Macros Macros	
	D	6	- (**	fx	0.0003								*
- 21	A	A	В	С	D	E	F	G	Н	E	J	K	L 🚍
1				pka1co3	pka2co3	logksum		рКw	UO2HA	UO2OHHA	UO2OH	UO2(OH)2	UO2(OH)3
2				6.30	10.25	-17.55		13.92	logB1100	logB11-10	logK10-10	logK10-20	logk10-30
3									6.16	14.70	-5.40	-10.50	-19.20 =
4													
5	рН	рН	pp CO2	[UO2]t M	[HA(II)]tot	p[CO3]f	pHA(II)f	рМ	[UHA(II)]	[UOHHA(I)]	[UOH]	[U(OH)2]	[U(OH)3]
6	1.0	1.0	3.50E-04	2.00E-07	3.00E-04	19.01	4.00	7.00	1.45E-05	1.21E-09	3.98E-12	3.16E-16	6.31E-24
1	1.1	1.1	3.50E-04	2.00E-07	3.00E-04	18.81	4.00	7.00	1.45E-05	1.52E-09	5.01E-12	5.01E-16	1.26E-23
8	1.2	1.2	3.50E-04	2.00E-07	3.00E-04	18.61	4.00	7.00	1.45E-05	1.91E-09	6.31E-12	7.94E-16	2.51E-23
9	1.3	1.3	3.50E-04	2.00E-07	3.00E-04	18.41	4.00	7.00	1.45E-05	2.40E-09	7.94E-12	1.26E-15	5.01E-23
10	1.4	1.4	3.50E-04	2.00E-07	3.00E-04	18.21	4.00	7.00	1.45E-05	3.03E-09	1.00E-11	2.00E-15	1.00E-22
11	1.5	1.5	3.50E-04	2.00E-07	3.00E-04	17.01	4.00	7.00	1.45E-05	3.8TE-09	1.20E-11	3.16E-15	2.00E-22
12	1.0	1.0	3.50E-04	2.00E-07	3.00E-04	17.61	4.00	7.00	1.45E-05	4.80E-09	1.58E-11	5.01E-15	3.98E-22
14	1.7	1.7	3.50E-04	2.00E-07	3.00E-04	17.01	4.00	7.00	1.45E-05	0.04E-09	2.00E-11	1.94E-10	1.94E-22
14	1.0	1.0	3.50E-04	2.00E-07	3.00E-04	17.41	4.00	7.00	1.45E-05	9.50E-09	2.0TE-TT	2.00E-14	9.16E-21
16	2.0	2.0	3.50E-04	2.00E-07	3.00E-04	17.21	4.00	7.00	1.45E-05	1.21E-09	3.08E-11	2.00E-14	6.91E-21
17	2.0	2.0	3.50E-04	2.00E-07	3.00E-04	16.91	4.00	7.00	1.402-00	1.52E-08	5.01E-11	5.10E-14	1.26E-20
18	2.1	2.1	3.50E-04	2.00E-07	3.00E-04	16.61	4.00	7.00	1.45E-05	1 91 F-08	6.31E-11	7 94E-14	2.51E-20
19	2.3	23	3 50F-04	2.00E-07	3.00E-04	16.01	4 00	7.00	1.45E-05	2 40F-08	7.94F-11	1.26E-13	5.01E-20-
14 4	4	4	0.002 04	2.002 01	0.002 04	10.11	1.00	1.00	1.102 00	2.102.00	I.VIE II	T.EOE TO	0.012 200
Read				и. 						(m)	100%		
Reau	,						_	-	-			0	

X	🖬 🤊 -	(24 + [≠			spec	calc feoxal	[Compatik	ility Mode]	- Microsof	t Excel				×
F	ie i	lome Inse	rt Page La	ayout	Formu	ulas Data	Review	View	Add-Ins	Acrobat		۵	3 - 6	x
Norr	mal Page Layou We	I Page Br I Custom t I Full Scro prkbook Views	eak Preview Views een	Show	Zoor	m 100% Z Zoom	oom to election	New Windo Arrange All Freeze Pane	ow 📑 🖬 es - 🗆 🗟 Wind	Save Workspa	Switch ce Windows ~	Macros Macros		
	F5	-	0	f_x 1										~
- 41	A	В	С	D	E	F	G	Н	I	J	K	L	M	-
9	nH	(Fe)	(Oxalate)	nM	nl	Fel	FeOH	Fe(OH)2	Fe(OH)3	Fe(OH)4	Fe2(OH)2	Fe3(OH)4	TH2	
1														-
2	К						-2.19	-5.67	-12	-21.6	-2.95	-6.3		
3	ß	pkw				7.65	11.73	22.17	29.76	34.08	24.89	49.38	4.8	=
4	Fe	13.92				1	1	1	1	1	2	3	0	
5	Oxalate					1	0	0	0	0	0	0	1	
6	H					0	0	0	0	0	0	0	2	
1	ОН					0		2	3	4	2	4	0	
8		(5.1	IO veletel	- 14	-	E a l	E-OU					E-0/01134	1.110	
9	рн			рм 4 90	pL Z E e	TeL 1 e1E oE	PEUH	Fe(UH)2	1 00E 14	Fe(UH)4	1 00E 11	1 10E 17		
11	1	1 3.00E-00	4.50E-05	4.09	7.00	1.01E-05	0.40E-07	2.70E-09	1.30E-14	0.27E-20	0.10E-11	1.10E-17	1.70E-00	-
12	1.	2 2 00E-05	4.00E-00	4.90	7.40	2.005-05	0.90E-07	3.71E-09	2.10E-14	1.44E-22	2.10E-11	1.00E-17	1.40E-00	
12	1.	2 3.00E-00	4.00E-00	5.19	7.01	2.00E-00	9.64E-07	6.37E-09	5.02E-14	2.08E-22	2.55E-11	2.00E-17 3.33E-17	1.02E-05	
14	1	4 3 00E-05	4.00E-00	5.21	7.08	2.10E-00	9.04E-07	8.23E-09	9.67E-14	6 10E-22	2.64E-11	4.54E-17	8.40E-06	
15	1	5 3 00E-05	4.50E-05	5.31	6.96	2.20E-00	1.01E-06	1.06E-08	1.57E-13	1.24E-21	2.04E 11	6.08E-17	6.86E-06	
16	1	3 00E-05	4 50E-05	5.40	6.85	2.40E-00	1.03E-06	1.35E-08	2.52E-13	2.52E-21	2.84E-11	8.02E-17	5.57E-06	1
17	1	7 3 00E-05	4 50E-05	5 49	6 75	2.57E-05	1.04E-06	1.72E-08	4 04E-13	5.09E-21	2.91E-11	1.05E-16	4 51 E-06	1
18	1.	8 3.00E-05	4.50E-05	5.59	6.64	2.64E-05	1.05E-06	2.19E-08	6.47E-13	1.03E-20	2.96E-11	1.36E-16	3.63E-06	1-
14 4	H 4	speccalc fe	oxal(1) 🥀	7/									•	
Sele	ct destinat	ion and press	ENTER or ch	oose Pas	te						回 四 100%	0	, D(·	÷,
		and press			-	-	-		-				14	

U speciation with different CO₂ partial pressure

Comparison of measured and calculated uranyl organic colloid

Tain solution Solids	Reactions Sorption Data	abase Output Piper JPlot						
quantity	,	species	value	unit	Temperature:	25	C	
					Volume:	1.0	[
					Time:		sec	
					Density:	🔘 fix) fr	ee
						1000.0	g/l	- 3
					Balance on:	disabled		87
	add	🗘 dit	e import					
Redox state				Activity-correctio	n models			
	enabled		-	Solvent:	none		•	
	olisabled	all		Species:	truncated-day	ies	-	

Energy terms

- Constants can be used to evaluate energetic of reaction
 - From Nernst equation $\rightarrow \Delta G = -RT \ln K$
 - $\Delta G = \Delta H T \Delta S$

 \rightarrow -RTlnK = \triangle H-T \triangle S

 \rightarrow RlnK= - Δ H/T + Δ S

* Plot RlnK vs 1/T

Solubility Products

- Equilibrium involving a solid phase
 - $AgCl(s) \le Ag^+ + Cl^-$

$$K = \frac{[Cl^-][Ag^+]}{[AgCl]}$$

- AgCl concentration is constant
 →Solid activity and concentration is treated as constant
 - →By convention, reaction goes from solid to ionic phase in solution
- Can use K_{sp} for calculating concentrations in solution

$$K_{sp} = K[AgCl] = [Cl^{-}][Ag^{+}]$$

Solubility calculations

- AgCl(s) at equilibrium with water at 25°C gives 1E-5 M silver ion in solution. What is the K_{sp}??
 - $AgCl(s) < --> Ag^+ + Cl^-: [Ag^+] = [Cl^-]$

•
$$K_{sp} = 1E-5^2 = 1E-10$$

- What is the [Mg²⁺] from Mg(OH)₂ at pH 10?
 - $K_{sp} = 1.2E-11 = [Mg^{2+}][OH]^2$
 - [OH] = 10⁻⁽¹⁴⁻¹⁰⁾

$$[Mg^{2+}] = \frac{1.2E - 11}{1E - 8} = 1.2E - 3$$

- K_{sp} of UO₂ = 10⁻⁵². What is the expected U⁴⁺ concentration at pH 6. Generalize equation for any pH
 - Solubility reaction: $\rightarrow UO_2 + 2 H_2O \leftarrow U(OH)_4 \leftarrow \rightarrow U^{4+} + 4 OH^{-1}$
 - $K_{sp} = [U^{4+}][OH^{-}]^{4}$

For any pH

- $[U^{4+}] = K_{sp} / [OH^{-}]^4$
 - \rightarrow pOH + pH = 14
 - \rightarrow At pH 6, pOH = 8, [OH⁻]=10⁻⁸

 \rightarrow [U⁴⁺]= 10⁻⁵²/[10^{-(14-pH)*4}]

 \bigcirc Log [U⁴⁺]= -52+((14-pH)*4)

- $[U^{4+}] = \frac{10^{-52}}{[10^{-8}]^4} = \frac{10^{-52}}{10^{-32}} = \frac{10^{-20}}{10^{-32}}$ M

2-46

Limitations of K_{sp}

- Solid phase formation limited by concentration
 - below ≈1E-5/mL no visible precipitate forms
 →colloids
- formation of supersaturated solutions
 - slow kinetics
- Competitive reactions may lower free ion concentration
- Large excess of ligand may form soluble species
 - $AgCl(s) + Cl^{-} < --> AgCl_{2}(aq)$

 \underline{K}_{sp} really best for slightly soluble salts

Overview

- Understand heats of reactions
 - Enthalpy, entropy, Gibbs free energy
 - Reaction data from constituents
- Understand half-cell reactions
 - Nernst Equation
- Kinetics
 - Influence of reaction conditions
- Equilibrium and constants
 - Use to develop a speciation spreadsheet

Questions

- What is the difference between 1st and 2nd order kinetics?
- What can impact reaction rates?
- How can a compound act as a base and acid? Provide an example.
- What does the dissociation constant of an acid provide?
- Provide the speciation of acetic acid at pH 3.5, 4.5, and 5.5.
- What are the species from carbonic acid at pH 4.0, 6.0, and 8.0?
- Set up the equations to describe the speciation of uranyl, the uranyl monocarbonate, and the uranyl dicarbonate.

Questions

- Comment in blog
- Respond to PDF questions